
Extended Abstract

Motivation Large language models (LLMs) excel at arithmetic reasoning but incur high latency
and compute costs that make them impractical for real-time or resource-constrained applications. In
contrast, sub-1-billion-parameter models are fast and lightweight but struggle with even moderate
multi-step arithmetic tasks like the classic Countdown problem. We explore whether structured
function-calling interfaces can bridge this gap, enabling a tiny model to outsource complex operations
and verification steps to external tools, thereby combining efficiency with reliability.

Method We design three function-calling paradigms for a Qwen-2.5 (0.5B) model: (1) a
<calculator> tool for local expression evaluation, (2) a <verify>/<help> cascade where the
small model proposes a solution, verifies it, and falls back to a larger LM or receives a hint on failure,
and (3) a brute-force <solver> tool that exhaustively searches the expression space. Each paradigm
is encoded into the model’s chain-of-thought via supervised fine-tuning, teaching it to interleave
reasoning with explicit function calls.

Implementation We adapt the Asap7772/cog_behav_all_strategies dataset to include
function-call markers, fine-tune Qwen-2.5-0.5B on these examples, and serve the model with an
inference loop that pauses on <FUNC> tokens, executes the corresponding API, and reintegrates the
result into the prompt. Tool execution is handled by a vLLM-based serving framework that intercepts
calls at generation time.

Results On a held-out set of 1,000 Countdown problems, the calculator-only model achieves 0.314
exact-match accuracy, in comparison to baseline scores of 0.271 (SFT) and 0.388 (RLOO). The
verify-help cascade jumps to 0.704, closing 59% of the gap toward the solver upper bound of 0.978.
Crucially, it attains 88% of a GPT-4.1-mini baseline’s accuracy while incurring only 76.7% of its
cost.

Discussion Structured function calling enables a sub-1B model to handle complex arithmetic by
delegating only the hardest cases, balancing quality and efficiency. The verify-help pattern generalizes
to any domain with a deterministic validator and fallback solver. Remaining challenges include
reducing fallback frequency and extending to multi-step tool chains.

Conclusion Structured function calling can successfully transform a tiny language model into
a near-state-of-the-art arithmetic reasoner at a fraction of the compute cost. By teaching a small
model to propose, verify, and escalate, we create a system that is both efficient and reliable. This
work provides a clear and promising blueprint for deploying powerful reasoning systems in resource-
constrained environments that extends to real world reasoning tasks.



Efficient Arithmetic Reasoning in Small LMs via
Function Calling

Alina Hu
Department of Computer Science

Stanford University
alhu@stanford.edu

Ron Wang
Department of Computer Science

Stanford University
ronyw@stanford.edu

Abstract

While large language models (LLMs) demonstrate strong arithmetic reasoning
abilities, their high computational and latency costs make them impractical for
many real-time or resource-constrained settings. Meanwhile, sub-1B parameter
models are extremely efficient but struggle to reliably solve multi-step arithmetic
tasks such as the Countdown problem. We extend the capabilities of a Qwen-
2.5 0.5B Base model with Curriculum Learning and Function Calling. On three
function-calling configurations, calculator-use, verify-help-use, and solver-use,
the model achieves scores of 0.314, 0.704, and 0.978, respectively. Crucially, we
found the verify-help-use setup delivers 88% of a GPT-4.1-mini baseline’s accuracy
while incurring only 76.7% of its inference cost. Overall, these results demonstrate
that with appropriate tool design and scaffolding, a 0.5B model can deliver near
state-of-the-art performance on specific math reasoning tasks at a fraction of the
compute and latency expense.

1 Introduction

Reinforcement Learning (RL) has recently become a powerful paradigm for adapting language
models beyond standard supervised objectives. By learning from reward signals or human preferences,
RL methods enable models to iteratively refine their behavior through trial-and-error, overcoming
limitations of purely example-based fine-tuning. Two main RL strategies have emerged: 1. Preference-
based methods leverage pairwise or ranking feedback when absolute reward definitions are unavailable
(e.g., comparing essay drafts). 2. Verifier-based methods employ rule-based or learned reward
functions to judge correctness, particularly useful for domains with clear evaluation criteria such as
mathematics or code generation.

Specifically, arithmetic and symbolic reasoning tasks present a unique challenge: they demand precise,
multi-step planning and error-free execution. Unlike open-ended text generation, each operation must
be logically decomposed and verified, creating unambiguous reward signals ideal for verifier-based
RL. There could be various solution strategies, including leveraging external computation or adding
tool support.

The Countdown Task We focus on the classic Countdown arithmetic challenge where a model
must combine a small set of integers using +−×÷ to reach a target value. Success requires both
strategic exploration of the expression space and deterministic verification of candidate solutions.

Baselines: SFT vs. RLOO We benchmark two approaches on this task: Supervised Fine-Tuning
(SFT) and REINFORCE Leave-One-Out (RLOO). RLOO is a variance-reduced policy gradient
method that computes baselines by averaging over all other samples in a minibatch, yielding sig-
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nificantly lower gradient variance than vanilla REINFORCE. On our Countdown dataset, RLOO
outperforms SFT by 25.7 percentage points, underscoring the value of RL for arithmetic reasoning.

Extenion - Curriculum Learning. We introduce a tiered curriculum that begins with simpler
three-number problems and gradually incorporates more complex four-number scenarios once the
model reaches proficiency. This staged progression accelerates learning and stabilizes training.

Extenion - Function Calling. We designed an interface enabling a 0.5 B-parameter model (Qwen-
2.5) to invoke three specialized functions, including arithmetic computation, solution verification, hint
generation, and full solver fallback, all directly within its generation loop. Section 3.4 details our SFT
pipeline for instilling precise function-calling behavior and our vLLM-based serving framework for
tool orchestration. In addition to two baseline methods, we propose a novel cascade, verify-help-use,
inspired by speculative decoding, where the model first generates and verifies its own solution via
<verify>, resorting to <help> only upon failure. This retains 88% of GPT-4.1-mini’s accuracy
while operating at only 76.7% of its inference cost.

Contributions

1. An empirical comparison of SFT and RLOO on the Countdown task, demonstrating a 25.7%
performance gain with RLOO.

2. A tiered curriculum learning strategy that progressively escalates problem complexity to
accelerate model mastery.

3. A framework for fine-tuning, serving, and evaluating small LMs with structured function-
calling APIs.

4. A comprehensive study of tool-design trade-offs, calculator-use, verify-help-use, and solver-
use for efficient arithmetic reasoning.

2 Related Work

2.1 Curriculum Learning

Prior work has touched upon principles related to our approach. For instance, Mukherjee et al. (2023)
implements a form of progressive learning where the Orca model is first taught by a weaker teacher
(ChatGPT) before learning from a stronger one (GPT-4), effectively creating a two-stage curriculum
of increasing complexity. This concept of teaching foundational skills first is echoed in work by
Gandhi et al. (2025), which identifies key cognitive behaviors like verification and backtracking as
crucial for self-improvement; such behaviors could be explicitly taught through a carefully structured
curriculum. Furthermore, the composition of the curriculum data itself is critical. Research by Setlur
et al. (2024) highlights the significant efficiency gains from training on negative synthetic samples,
suggesting a powerful method for constructing curriculum stages that teach a model to avoid common
pitfalls. While other works like DeepSeek-AI et al. (2025) demonstrate that complex reasoning can
emerge without explicit curricula, we posit that a systematic curriculum could guide this emergence
more effectively. Overall, a cohesive framework that combines dynamic curricula with strategic data
generation for RL fine-tuning remains a compelling area for investigation.

2.2 Function Calling

Previous studies primarily focus on teaching large LMs to perform function calling. Large
pre-trained models (6B+ parameters) have been the primary beneficiaries of function-calling instruc-
tion. ReAct by Yao et al. (2023) interleaves chain-of-thought reasoning with external API calls to
calculators and search engines, showing sizable gains on multi-step QA benchmarks. Toolformer
by Schick et al. (2023) takes this further by automatically generating its own self-supervised API-use
demonstrations on top of GPT-J (6.7B), teaching the model when to call a broad suite of tools (search,
translation, calendar, code execution) and how to integrate the results back into text. The function
Calling interface developed by OpenAI (2025) similarly exposes curated endpoints (e.g. ‘/weather‘,
‘/calculate‘) but is driven by prompting, rather than fine-tuning. While these approaches demonstrate
that LMs can learn rich tool-grounded behaviors, they have not been evaluated in the sub-1B regime
nor optimized for minimal API interactions per task.
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Delegating tasks to small LMs. Responding to the heavy compute demands of large models, recent
work has explored cascaded and distilled pipelines that offload “easy” subproblems to compact
models. For example, speculative decoding Chen et al. (2023) uses a small “draft” LM to propose
tokens and a larger LM to verify them at each step, cutting token-level latency. However, these
methods either treat the small model purely as a probability estimator (without explicit API use)
or apply verification at the token level rather than at the task level. Distillation efforts in Jiao et al.
(2020) compress general-purpose reasoning abilities into sub-1B models, but do not endow them
with function-calling capabilities. To our knowledge, no prior work has fine-tuned a sub-1B model to
perform one or two purpose-specific API calls per example (using a verify-and-fallback pattern) to
solve structured tasks like arithmetic enumeration with both efficiency and reliability.

Iterative Self-Refinement and Verification. Madaan et al. (2023) introduce a self-refine loop where
an LM critiques and corrects its own outputs before finalizing an answer. Reflexion Shinn et al.
(2023) extends this to multi-turn feedback between agent and environment. These methods hinge on
in-language critique; by contrast, our tools and verifiers are external, with guaranteed evaluation and
arithmetic correctness.

3 Methods

This section presents the core algorithmic approaches employed in our investigation of reinforcement
learning for mathematical reasoning. We implement four key components: supervised fine-tuning as
a foundation, RLOO for variance-reduced policy optimization, curriculum learning for structured
difficulty progression, and function calling for tool integration.

3.1 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning serves as both our baseline method and the initialization point for subsequent
RL approaches. Following standard practice in language model fine-tuning, we optimize the next-
token prediction objective over high-quality demonstration data, with loss applied only to completion
tokens rather than query tokens.

Formally, given a dataset D of query-completion pairs (x, y), the SFT objective is:

LSFT(θ) = max
θ

E(x,y)∼D

 |y|∑
t=1

log πθ(yt|x, y<t)

 (1)

where πθ represents our policy (language model) with parameters θ, yt is the token at position t, and
y<t denotes all preceding tokens in the completion.

For mathematical reasoning tasks, this approach enables the model to learn solution patterns and
mathematical notation from expert demonstrations. However, SFT is fundamentally limited by the
quality and coverage of the training data, motivating our exploration of RL-based approaches that
can improve beyond the demonstration distribution.

3.2 REINFORCE Leave-One-Out (RLOO)

RLOO addresses the high variance problem inherent in standard REINFORCE by computing more
effective baselines through leave-one-out estimation. Rather than using a single baseline or no
baseline at all, RLOO leverages multiple samples from the current policy to construct variance-
reduced gradient estimates.

The RLOO gradient estimator for a batch of k samples {y(1), . . . , y(k)} drawn from policy πθ(·|x)
is:

∇θJRLOO =
1

k

k∑
i=1

R(y(i), x)− 1

k − 1

∑
j ̸=i

R(y(j), x)

∇θ log πθ(y
(i)|x) (2)
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where R(y, x) is the reward function and the term 1
k−1

∑
j ̸=i R(y(j), x) serves as the leave-one-out

baseline for sample i.

This formulation provides several advantages over standard REINFORCE: (1) the baseline is com-
puted from the same policy distribution as the samples, ensuring better variance reduction, (2) the
leave-one-out construction prevents the baseline from being correlated with the sample being updated,
and (3) the method requires no additional neural network training for baseline estimation.

For mathematical reasoning, RLOO enables the model to learn from both successful and unsuccessful
solution attempts, progressively improving its problem-solving strategies through reward-guided
exploration.

3.3 Curriculum Learning

Mathematical problems exhibit natural difficulty hierarchies, with some requiring fewer operations,
smaller numbers, or simpler arithmetic relationships. We implement a tier-based curriculum learning
approach that systematically progresses from easier to more challenging problems.

Our curriculum organizes training problems into difficulty tiers based on complexity metrics. The
curriculum progression follows a performance-gated approach. A tier t becomes active when the
model achieves a performance threshold τt on currently active tiers:

Tier t activated ⇐⇒ R̄active ≥ τt−1 (3)

where R̄active is the average reward on currently active tiers.

During training, problems are sampled uniformly from the set of active tiers A:

P (sample from tier t) =

{
1

|A| if t ∈ A
0 otherwise

(4)

This approach synergizes with RLOO by providing more consistent reward signals early in training,
allowing models to develop fundamental arithmetic strategies before attempting complex multi-step
solutions.

3.4 Function Calling

We evaluate each model’s performance when augmented with one of three external tools (functions):

1. <calculator>: evaluates arbitrary mathematical expressions.

2. <verify> and <help>: <verify> checks whether a proposed answer is correct; if not,
<help> invokes a larger LM to generate the solution or to give a hint.

3. <solver>: performs a direct search over candidate expressions to find valid solutions.

As summarized in Algorithm 1, we extend the Asap7772/cog_behav_all_strategies dataset
from HuggingFace to construct a supervised fine-tuning (SFT) dataset. In our dataset, each example
demonstrates the syntax for invoking a tool, e.g.

<FUNC>[optional parameters]</FUNC>.

Further details on our data collection procedure are provided in the Appendix.

Each fine-tuned model learns to embed tool calls directly into its chain-of-thought. To support
interleaving of reasoning and tool execution, we implement a compound AI system that: Pauses
generation upon detecting a <FUNC> tag; Executes the corresponding tool in the host environment;
Appends the tool’s result back into the model’s context; Resumes generation until the closing
</answer> marker. Algorithm 2 details the full inference loop.
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… You can call the solver function 
using the format: <SOLVER> [95, 
36, 32] -> 91 </SOLVER> to 
evaluate the expression…

Query

Solver
Tool

Completion
<SOLVER> [95, 36, 32] -> 91 
</SOLVER>
((95 + 32) - 36)
Now, I have to submit the final 
answer.
<answer> ((95 + 32) - 36) </answer>

… for example <answer> (1 + 2) / 3 
</answer>.
Assistant: Let me solve this step 
by step.
(same as in cog_behave)

Query

Calculator
Tool

Completion
<think>
…<CALL_CALC> 36 - 32 
</CALL_CALC> = 4
This could be useful since we need 
to reduce 95 by 4!...
<answer>95 - (36 - 32)</answer>

📝 Initial Prompt

🤖 LLM Generation

🔍Check Output

     🧮
Extract 
Expr

      📊
Append 
Result

       📄   
Continue

       ✅
Final 
Answer

      💾
Save 
Results

     ⚡
Execute 
Tool

Contains 
</func> Neither

Contains 
</answer>

Figure 1: (a) and (b) show the SFT example formats used for the calculator-augmented and oracle-
solver models, respectively. In (a), the calculator model issues <CALL_CALC> expr </CALL_CALC>
tags; in (b), the solver model uses <SOLVER>[nums] → target</SOLVER>. (c) illustrates the
architecture of the compound system that orchestrates model inference, tool execution, and context
updating.

Algorithm 1: Training & Preparation
Input: P = {(numsi, targeti)}— set of Countdown problems
Tool definitions (e.g. <verify>, <help>)
Base LM (Qwen-2.5 0.5B)
Output: Fine-tuned model M0

Collect SFT dataset D: for each (nums, target) ∈ P , create an example illustrating the
appropriate <FUNC> invocation;

Fine-tune the base LM on D to obtain model M0;

Algorithm 2: Inference with Function Calling
Function SolveCountdown(nums, target):

prompt← FormatPrompt(nums, target);
partial_output← "";
state← InitializeState(M0, prompt);
while true do

token←M0.generate_next(state);
partial_output.append(token);
if the token completes a <FUNC> tag then

(call, state)← ReadUntil("</FUNC>", state);
result← EXECUTE_TOOL(call);
partial_output.append(result);
state.update_context(result);

if the token completes "</answer>" then
break

answer← ExtractBetween("<answer>", "</answer>", partial_output);
return answer;
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The three tool configurations provide broad coverage of the function-calling design space. The
calculator tool defines the lower bound: it only evaluates local arithmetic expressions, improving
numerical accuracy without aiding high-level reasoning. Conversely, the solver tool establishes the
upper bound by exhaustively searching the solution space, enabling the small LM to achieve near-
oracle performance on a very specific task. Positioned between these extremes, our <verify>–<help>
cascade lets the model propose a solution, invokes <verify> to check correctness, and if the check
fails, defers to a larger LM via <help>. We also examine how supplying hint text from the larger LM
affects the smaller model’s decision-making about when to verify or seek assistance.

4 Experimental Setup

This section details the specific configurations, datasets, and hyperparameters used to implement and
evaluate our Supervised Fine-Tuning (SFT), REINFORCE Leave-One-Out (RLOO), and RLOO with
Curriculum Learning (RLOO-CL) pipelines.

4.1 Common Setup

All experiments were conducted on AWS EC2 g6e.xlarge instances. Our implementation is
built using native PyTorch code while leveraging the Hugging Face transformers and datasets
libraries. For performance optimization, we utilize torch.compile() where available and automatic
mixed-precision training. The base model for all fine-tuning experiments is the Qwen/Qwen2.5-0.5B
model.

4.2 Dataset and Preprocessing

Our work focuses primarily on evaluating model performance on the Countdown mathematical
reasoning task, introduced in Gandhi et al. (2024).

For Supervised Fine-Tuning, we use the warm-start dataset from Gandhi et al. (2025), which contains
high-quality solutions demonstrating desirable cognitive behaviors such as backtracking and verifica-
tion. The dataset is sourced from Hugging Face at Asap7772/cog_behav_all_strategies.

For RLOO and RLOO-CL, prompts are sourced from the TinyZero Countdown dataset available on
Hugging Face at Jiayi-Pan/Countdown-Tasks-3to4.

For Function Calling, we modified Asap7772/cog_behav_all_strategies to build custom
datasets for specific function calling syntax and behaviors. We further discuss this in the Appendix.

The dataset is split into a 90/10 train/test set. Inputs are tokenized and padded to a maximum length
of 512 tokens.

4.3 RLOO with Curriculum Learning (RLOO-CL)

The curriculum learning pipeline uses the same core hyperparameters as the RLOO setup but
introduces a structured data sampler to manage problem difficulty.

Difficulty Tiers Rather than using a simple tier system based only on the quantity of numbers,
we define fine-grained difficulty tiers using a composite score. This score acknowledges
that a common human strategy involves factoring the target number, a strategy that is less
effective when prime numbers are involved. The integer difficulty score D for each problem
is calculated as follows:

D = 10×N + 5× I(target is prime) + 2×Np

where N is the number of input integers, I(·) is an indicator function, and Np is the count
of prime numbers in the input set. This creates a spectrum of distinct integer tiers (e.g., 30,
32, 35, 37, etc.) that represent a more accurate progression of problem complexity.

Progression Rule Training begins with only the easiest tier active (typically Tier 30). We attempt
to introduce the next available difficulty tier in sequence every 500 global training steps.
This allows the model to master basic arithmetic structures before progressively tackling
problems that are more challenging from a number-theoretic perspective.
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4.4 Evaluation

Performance is measured using a rule-based reward function from Gandhi et al. (2025) that verifies
the correctness of the generated mathematical expression. During training, the model is evaluated on
a held-out test set every 200 global steps, and the best-performing checkpoint is saved based on this
evaluation metric. The final scores correspond to the results submitted to the project leaderboard.

5 Results

5.1 Quantitative Analysis

We evaluated our primary baseline models, SFT and RLOO, against a curriculum-trained model and
the function-calling models. The results, measured by the exact match score on a held-out test set,
are summarized in Table 5.1.

Method Score vs. SFT Baseline
SFT Baseline 0.271 –
RLOO 0.388 +43.2%

Extension Models
Curriculum Learning Model 0.312 +15.1%

Calculator-Use Model 0.314 +15.9%
Verify-Help-Use Model 0.704 +159.8%
Solver-Use Model 0.978 +260.9%

Table 1: Performance comparison across all methods on the Countdown test set. The score represents
the fraction of problems solved correctly. RLOO shows a significant improvement over the SFT
baseline.

5.2 Qualitative Analysis

5.2.1 SFT Model

The SFT model generally learns to follow the specified format, generating a step-by-step thought
process before providing a final answer. As shown in the example below, it can successfully solve
problems by breaking them down. However, its reasoning paths are often simple and less exploratory
than those of the RLOO model.

Example SFT Generation (Success):

Assistant: Let me solve this step by step.<think>
Let me analyze this step by step:
1. First, let’s try to get close to 98 with basic operations:
- 44 + 19 = 63 (too low)
...
5. New approach:
- 35 + 19 = 54
- 54 + 44 = 98!
</think>
<answer> (35 + 19) + 44 </answer>

5.2.2 RLOO Model

The RLOO model, benefiting from online feedback, demonstrates more intricate and persistent
exploration in its thought process. It often attempts numerous paths before settling on a solution.
While this leads to a higher success rate, it also introduces several interesting failure modes.
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Successful RLOO Generations: The model successfully solves problems by identifying non-obvious
combinations, such as ‘(85 - 84) + 45‘ to reach the target ‘46‘. These successes highlight its improved
planning capabilities.

Failure Mode 1: Reasoning-Expression Mismatch A common failure involves the model devising
a correct reasoning path but failing to translate it into a valid mathematical expression that respects
the order of operations.

Example: To reach the target ‘42‘ with numbers ‘[28, 3, 29, 71]‘:

<think>
...
Let’s try another sequence:
- 71-28 = 43
- 43-29 = 14
- 14*3 = 42
This looks promising!
</think}
<answer> (71-28)-29*3 </answer>

Here, the thought process correctly identifies the sequence ‘((71-28)-29)*3 = 42‘. However, the
final answer ‘(71-28)-29*3‘ evaluates to ‘-44‘, demonstrating a failure to correctly parenthesize the
expression.

Failure Mode 2: Hallucinated Solutions In several instances, the model’s thought process shows
it struggling to find a solution, yet it concludes by confidently asserting an incorrect answer. This
suggests that the outcome-based reward may encourage the model to produce an answer, even if the
underlying reasoning is flawed.

Example: To reach the target ‘55‘ with numbers ‘[51, 50, 5, 14]‘:

<think>
...
9. Final solution:
- 50 + (51 - 14 - 5) = 55
- This works!
</think>
<answer>50 + (51 - 14 - 5)</answer>

The model claims its solution works, but the expression ‘50 + (51 - 14 - 5)‘ actually evaluates to ‘82‘.

Failure Mode 3: Incomplete or Conflated Reasoning The most severe failures involve the model
either giving up entirely (outputting ‘null‘) or appearing to confuse contexts between different
problems. In one case, while attempting to solve for target ‘1‘ with numbers ‘[12, 71, 17, 99]‘, its
thought process contains reasoning using numbers from a completely different problem (‘[83, 48,
18, 49]‘). This points to potential issues in how the model manages attention and context during the
complex, multi-step generation required for RL-based rollouts.

5.2.3 Curriculum Learning + RLOO

The curriculum learning model, which was trained on problems of increasing difficulty based on
the number of inputs, showed a clear performance dependency on task complexity. For clarity and
brevity, Table 2 summarizes the results using a simplified difficulty metric: the number of problem
inputs. We see that the model achieved a respectable success rate of 33.5% on the easiest tier of
problems (3 numbers). However, its accuracy dropped significantly as the number of inputs increased,
falling to just over 3% on problems with 5 or 6 numbers.

This quantitative result is supported by our qualitative analysis. On simpler 3-number problems, the
model frequently generated correct or near-correct solutions. On more complex problems, however,
it exhibited failure modes similar to the standard RLOO model, such as reasoning-expression
mismatches and producing syntactically invalid outputs. This suggests that while the curriculum
strategy successfully taught the model foundational reasoning patterns on simpler tasks, the training
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was not sufficient for it to generalize these skills to more complex combinatorial search spaces within
the given training budget.

Difficulty (Num Inputs) Total Problems Correct Solutions Success Rate
3 606 203 33.50%
4 210 45 21.43%
5 130 4 3.08%
6 54 2 3.70%

Table 2: Success rate by difficulty (number of inputs) for the Curriculum Learning Model. Perfor-
mance declines as complexity increases.

5.2.4 Function Calling

We evaluate three function-calling strategies on the standard Countdown leaderboard. Figure 2
summarizes the overall performance of each approach:

• Calculator-Use Model achieves a leaderboard score of 0.314. This baseline model relies
solely on the <calculator> tool to evaluate individual arithmetic operations, without any
form of higher-level guidance or search.

• Verify-Help-Use Model attains a substantially higher score of 0.704. By first proposing
a complete solution with the small LM, then invoking <verify> to check correctness and
falling back to <help> on failure, this model more than doubles the calculator-only result.
It closes approximately 0.704−0.314

0.978−0.314 ≈ 59% of the gap between the naive baseline and the
oracle upper bound.

• Solver-Use Model serves as an (almost) oracle, directly searching the full expression space
via the <solver> tool to achieve a near-perfect score of 0.978. This represents the practical
upper limit of our framework when exhaustive enumeration is allowed.

Calculator-Use Model
(General)

Verify-Help-Use Model Solver-Use Model
(Task-Specific)

Function Calling Approach

0.0

0.2

0.4
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0.8
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e

0.314
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0.978

Figure 2: Leaderboard scores for the three function-calling strategies. The verify-help approach yields
a substantial improvement over the calculator-only baseline, while the solver-use model illustrates
the upper bound achievable via exhaustive search.

The Verify-Help-Use Model Retains Accuracy While Cutting Cost. As shown in Figure 2,
invoking the <help> tool delegates the problem to GPT-4.1-mini, which alone solves 79.1% of cases.
Our small LM (0.5 B) solves 23.3% of problems autonomously, avoiding any fallback. Overall, this
means the combined system achieves 88% of the large-model’s accuracy while incurring only 76.7%
of its cost (we ignore the negligible serving cost of the small model).
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Hint text generated by large LM does not help improve accuracy. We additionally experimented
with having the large LM provide a hint for a subset of test examples, but saw no improvement in
accuracy. We attribute this to the fact that the base model has not been instruction-tuned and therefore
cannot effectively leverage hint text.

Different Function Calling Designs Reveal Tradeoff in Cost and Quality. The calculator-use
model’s limited context and purely local arithmetic improvements yield limited coverage of the
combinatorial search space, as reflected by its low score of 0.314. Notably, this is not higher than
using a plain SFT model. Introducing a verification step and targeted fallback to a stronger LM
dramatically boosts performance. We further expect this performance to increase with the size of
the large LM. While the solver-use model achieves near-oracle accuracy, it does so at the cost of
exhaustive enumeration. The verify-help model, by contrast, achieves over 70% of the optimal
leaderboard score by delegating tasks to the larger LM only when necessary, striking a balance
between computational cost and answer quality.

6 Discussion

Our experimental results demonstrate that structured function calling can transform a sub-1B parame-
ter language model from an inefficient enumerator into a high-accuracy, cost-effective reasoner on
the Countdown task. In this section we analyze the behavior, benefits, and limitations of our various
function-calling paradigms, and identify avenues for further improvement.

6.1 Training Stability and Practical Considerations

Our results show RLOO is superior to SFT, achieving a 43.2% higher score, but also demonstrated
significant training instability. This is a common challenge with on-policy reinforcement learning
methods. We found that careful hyperparameter tuning, specifically by increasing the effective batch
size and the number of sampled rollouts, helped stabilize the training process. This, however, comes
at the direct cost of increased computational requirements and longer training times, highlighting a
key practical tradeoff in applying these advanced optimization techniques in resource-constrained
environments.

6.2 Curriculum Learning

We hypothesized that a curriculum learning approach, by structuring the training from easier to more
difficult problems, would enable the model to build a more robust foundation and outperform the
standard RLOO model. Our results show this strategy had mixed success. The CL model performed
well on simpler problems with fewer numbers but failed to generalize its learned skills to more
complex tasks, ultimately underperforming the standard RLOO model (Table 2).

The steep drop-off in performance on harder problems suggests that while the curriculum was
effective at teaching foundational patterns, the model did not receive sufficient training to master the
more complex combinatorial search required for problems with more inputs or challenging number
properties. This is likely a consequence of our limited computational budget. With a longer training
schedule, the model would have more time to learn from the harder tiers, potentially allowing the
benefits of the structured curriculum to fully emerge and generalize across all difficulties.

6.3 Strengths of Function Calling

Deterministic Verification and Modular Solving The <verify> tool acts as a hard verification
gate, executing each proposed expression and filtering out incorrect results, thus preventing silent
failures and boosting system reliability. Whenever verification fails, a structured fallback via <help>
is triggered. Meanwhile, the <solver> tool equips the small LM with full programmatic solving
power, enabling it to leverage optimized code paths for problems suited to deterministic execution.

Broad Applicability Although our evaluation centers on the Countdown task, the same verify-help-
use paradigm extends naturally to any structured reasoning domain with a validator (e.g., logical
theorem proving, symbolic integration) and a fallback solver. Adapting to new tasks only requires
defining the appropriate tool APIs and curating fine-tuning data.
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6.4 Behavior of the Function-Calling Cascade

Fallback Dynamics Lower Costs In the verify-help-use configuration, Qwen-2.5 solves 23.3% of
problems on its own and delegates the remaining 76.7% to the <help> tool, achieving a combined
accuracy of 70.5% without exhaustive enumeration. By concentrating expensive large-model calls
on only the most challenging cases, this selective delegation cuts overall inference cost by 23.3%
compared to relying solely on the large model.

6.5 Limitations and Future Directions

Fallback frequency. For the verify-help-use configuration, a 76.7 % fallback rate still incurs
substantial large-model cost. Future work could incorporate further fine-tuning on the small LM
so that it more reasonably solves the task on its own and verifies when it is absolutely confident.
Fortunately, our serving system could support any small model.

Hint utilization. Our hint experiments showed no accuracy gains, likely because Qwen-2.5 was
not instruction-tuned. Fine-tuning the base model with hint-augmented prompts could enable better
utilization of partial guidance.

Extension to multi-step tool chains. We restrict each example to one or two function calls.
More complex pipelines—where the model iteratively invokes arithmetic, lookup, or reasoning
tools—might unlock even higher accuracy, at the cost of increased orchestration complexity.

7 Conclusion

In this work, we have demonstrated that Qwen-2.5-0.5B can be transformed into a high-quality
arithmetic reasoner by equipping it with structured function-calling capabilities. Through three
distinct paradigms, calculator-use, verify-help-use, and solver-use, we show that:

• A simple <calculator> interface raises exact-match accuracy from the SFT baseline of
0.271 to 0.314, purely by delegating low-level arithmetic to a deterministic engine.

• The verify-help cascade further leverages a small LM to propose full solutions, invokes
<verify> to filter incorrect candidates, and falls back via <help> to a larger LM only when
needed. This yields 0.704 accuracy, capturing 59% of the gap to oracle performance while
reducing large-model calls by 23.3%.

• An exhaustive <solver> tool can achieve near-perfect coverage (0.978), establishing an
upper bound for this specific task.

These results underscore three key insights:

1. Efficiency through Selective Delegation. The verify-help pattern concentrates expensive
computation on the hardest instances, enabling the tiny model to handle the majority of
cases at minimal cost.

2. Modularity and Generality. Any reasoning task that admits a deterministic validator (e.g.,
symbolic integration, logical proof checking) can adopt the same paradigm: propose, verify,
and fallback. This modularity reduces integration effort when porting to new domains.

3. Trade-off Frontier. By varying the sophistication and cost of the external tool, practitioners
can navigate the quality–compute trade-off curve, choosing the point that best fits latency or
budget constraints.

Limitations and Future Directions Despite its promise, our approach still incurs a large 76.7%
fallback rate under verify-help. Future work should focus on enhancing the small model’s self-
confidence and proposal quality to further drive down fallback frequency. Additionally, extending
function-calling chains to support multi-step or conditional API sequences (for example, iterated
lookups, search, and verification) may unlock even higher performance on more complex reasoning
tasks. Finally, a thorough investigation of how to instruction-tune sub-1 B models to better interpret
and utilize hint text could close remaining gaps in autonomous problem solving.
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Broader Impact Our findings point toward a practical path for deploying lightweight, low-latency
reasoning systems in real-world applications, ranging from on-device to embedded control systems,
without sacrificing the reliability traditionally only possible with large LMs. By decoupling reasoning
steps into small, composable modules, we can achieve advanced capabilities in resource-constrained
settings while retaining the flexibility to escalate to more powerful backends.

8 Team Contributions

• Alina Hu: Implemented RLOO Baseline and Curriculum Learning Model.

• Ron Wang: Implemented SFT Baseline and Function Calling Models. Built fine-tuning
and serving pipelines.

Changes from Proposal We chose to focus on exploring the function-calling abilities of the model.
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A Funtion-Calling Dataset Collection

All datasets are derived from the base HuggingFace dataset
Asap7772/cog_behav_all_strategies.

A.1 Calculator-Use

Consider the pair (query, completion), we rewrite each expression in completion using a special
function-call syntax, for example, if the original expression is 77 - 55 = 22, we rewrite it into
<CALC>77 - 55</CALC> = 22. During inference, the serving framework intercepts generation at
the end token </CALC> and uses a python function to evaluate the expression.

A.2 Verify-Help-Use

We first group all (query, completion) pairs into two groups with correct vs. incorrect solutions. For
those with correct solutions, we add to the end of the model’s thinking budget:

<verify> {expr} </verify>
{Correct}
This is correct!

For those with incorrect solutions, we instead add:

<verify>95 - (83 - (56 + 10))</verify>
{Incorrect}
This is incorrect, let me ask for help!
<help></help>
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and then append a solution sampled from the large model (gpt-4.1-mini), e.g.

We need to use each of 95, 56, 83, 10 exactly once with +, –, ×, ÷ to get 78.

1. Notice 56 + 10 = 66.
2. If we subtract that 66 from 83, we get 83 – 66 = 17.
3. Finally, subtracting 17 from 95 gives 95 – 17 = 78.
4. This uses all four numbers exactly once and only basic operations.</think>
<answer> 95 - (83 - (56 + 10)) </answer>

A.3 Solver-Use

We rewrite each (query, completion) pair to teach the model to invoke the solver tool directly, e.g.

Query:

A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the answer.
User: Using the numbers [95, 36, 32], create an equation that equals 91.
You can use basic arithmetic operations (+, -, *, /) and each number can
only be used once. Show your work in <think> </think> tags. And return
the final answer in <answer> </answer> tags,
for example <answer> (1 + 2) / 3 </answer>.
You can call the solver function using the format: <SOLVER> [95, 36, 32]
-> 91 </SOLVER> to evaluate the expression.
Assistant: I will use the provided solver function to find a solution.

Completion:

<SOLVER> [95, 36, 32] -> 91 </SOLVER>
((95 + 32) - 36)
Now, I have to submit the final answer.
<answer> ((95 + 32) - 36) </answer>

B Batch Dataset Builder

For A.2, we pre-compute all the completion responses from the large model (gpt-4.1-mini) for
efficiency. This also allows us to compute the baseline accuracy using the large LM. We found that
using the OpenAI API sequentially is extremely slow. We therefore built a batch dataset builder on
top of Ray, an open-source distributed computing framework, which allowed us to complete all of the
requests within 10 minutes.

C Hyperparameters for SFT and RLOO

C.1 Supervised Fine-Tuning (SFT) Baseline

The SFT model serves as our primary baseline and the initialization point for all RL experiments. It is
trained to minimize the standard next-token prediction cross-entropy loss on the expert demonstration
dataset. The training setup uses the following hyperparameters:

Epochs 3

Learning Rate 2e-5

Optimizer AdamW

Scheduler Linear schedule with warmup
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C.2 RLOO Fine-Tuning

The RLOO pipeline is initialized from the weights of the trained SFT model. Fine-tuning is performed
using an online policy gradient approach with the following hyperparameters:

Epochs 2
Learning Rate 1e-5
Optimizer AdamW with a weight decay of 0.01
Scheduler Linear schedule with a warmup ratio of 0.05
Batch Size 3
Gradient Accumulation Steps 2 (effective batch size of 6)
RLOO Samples (k) 6 samples per prompt
Generation Temperature 1.0
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